174 research outputs found

    Subspecies typing of Streptococcus agalactiae based on ribosomal subunit protein mass variation by MALDI-TOF MS

    Get PDF
    Background: A ribosomal subunit protein (rsp)-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method was developed for fast subspecies-level typing of Streptococcus agalactiae (Group B Streptococcus, GBS), a major cause of neonatal sepsis and meningitis. Methods: A total of 796 GBS whole genome sequences, covering the genetic diversity of the global GBS population, were used to in silico predict molecular mass variability of 28 rsp and to identify unique rsp mass combinations, termed “rsp-profiles”. The in silico established GBS typing scheme was validated by MALDI-TOF MS analysis of GBS isolates at two independent research sites in Europe and South East Asia. Results: We identified in silico 62 rsp-profiles, with the majority (>80%) of the 796 GBS isolates displaying one of the six rsp-profiles 1-6. These dominant rsp-profiles classify GBS strains in high concordance with the core-genome based phylogenetic clustering. Validation of our approach by in-house MALDI-TOF MS analysis of 248 GBS isolates and external analysis of 8 GBS isolates showed that across different laboratories and MALDI-TOF MS platforms, the 28 rsp were detected reliably in the mass spectra, allowing assignment of clinical isolates to rsp-profiles at high sensitivity (99%) and specificity (97%). Our approach distinguishes the major phylogenetic GBS genotypes, identifies hyper-virulent strains, predicts the probable capsular serotype and surface protein variants and distinguishes between GBS genotypes of human and animal origin. Conclusion: We combine the information depth of whole genome sequences with the highly cost efficient, rapid and robust MALDI-TOF MS approach facilitating high-throughput, inter-laboratory, large-scale GBS epidemiological and clinical studies based on pre-defined rsp-profiles

    Structural and functional characterisation of the Toll like receptor 9 of Aotus nancymaae , a non-human primate model for malaria vaccine development

    Get PDF
    In the absence of suitable rodent animal models for Plasmodium falciparum malaria, the efficacy testing of asexual blood-stage vaccine candidates in Aotus nancymaae represents a tool to select between different formulations before conducting expensive human clinical trials. CpG oligonucleotides (ODN) specifically promote the production of pro-inflammatory and Th1-type cytokines and they enhance the immunogenicity of co-administered antigens. Toll like receptor 9 (TLR-9) binds directly and sequence-specifically to single-stranded un-methylated CpG-DNA mediating the biological effects of CpG ODN. We cloned and functionally characterised the TLR-9 cDNA of A. nancymaae. The cDNA encompassed 3,099bp predicted to code for 1,032 amino acid residues. Results of homology searches to human TLR-9 suggested that the receptor is 93 and 94% identical at the nucleotide and amino acid sequence levels, respectively. Stimulation of splenocytes of A. nancymaae with CpG ODN resulted in proliferative responses in all animals analysed. FACS analysis of cultures incubated with CpG ODN 2006 indicated that the B cell marker CD20 was up-regulated consistent with B cell activation. The high level of sequence conservation of Aona-TLR-9 reinforces the suitability of A. nancymaae as animal model for malaria subunit vaccine developmen

    Absolute quantification of the host-to-parasite DNA ratio in Theileria parva-infected lymphocyte cell lines

    Get PDF
    Theileria parva is a tick-transmitted intracellular apicomplexan pathogen of cattle in sub-Saharan Africa that causes East Coast fever (ECF). ECF is an acute fatal disease that kills over one million cattle annually, imposing a tremendous burden on African small-holder cattle farmers. The pathology and level of T. parva infections in its wildlife host, African buffalo (Syncerus caffer), and in cattle are distinct. We have developed an absolute quantification method based on quantitative PCR (qPCR) in which recombinant plasmids containing single copy genes specific to the parasite (apical membrane antigen 1 gene, ama1) or the host (hypoxanthine phosphoribosyltransferase 1, hprt1) are used as the quantification reference standards. Our study shows that T. parva and bovine cells are present in similar numbers in T. parva-infected lymphocyte cell lines and that consequently, due to its much smaller genome size, T. parva DNA comprises between 0.9% and 3% of the total DNA samples extracted from these lines. This absolute quantification assay of parasite and host genome copy number in a sample provides a simple and reliable method of assessing T. parva load in infected bovine lymphocytes, and is accurate over a wide range of host-to-parasite DNA ratios. Knowledge of the proportion of target DNA in a sample, as enabled by this method, is essential for efficient high-throughput genome sequencing applications for a variety of intracellular pathogens. This assay will also be very useful in future studies of interactions of distinct host-T. parva stocks and to fully characterize the dynamics of ECF infection in the field

    Comparison of biomarker based Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) and conventional methods in the identification of clinically relevant bacteria and yeast

    Get PDF
    Background: MALDI-TOF MS is an analytical method that has recently become integral in the identification of microorganisms in clinical laboratories. It relies on databases that majorly employ pattern recognition or fingerprinting. Biomarker based databases have also been developed and there is optimism that these may be superior to pattern recognition based databases. This study compared the performance of ribosomal biomarker based MALDI-TOF MS and conventional methods in the identification of selected bacteria and yeast. Methods: The study was a cross sectional study identifying clinically relevant bacteria and yeast isolated from varied clinical specimens submitted to a clinical laboratory. The identification of bacteria using conventional Vitek 2ℱ automated system, serotyping and MALDI-TOF MS was performed as per standard operating procedures. Comparison of sensitivities were then carried out using Pearson Chi-Square test and p-value of Results: Of the 383 isolates MALDI-TOF MS and conventional methods identified 97.6 and 95.7% (p = 0.231) to the genus level and 97.4 and 88.0% (p = 0.000) to the species level respectively. Biomarker based MALDI-TOF MS was significantly superior to Vitek 2ℱ in the identification of Gram negative bacteria and Gram positive bacteria to the species level. For the Gram positive bacteria, significant difference was observed in the identification of Coagulase negative Staphylococci (p = 0.000) and Enterococcus (p = 0.008). Significant difference was also observed between serotyping and MALDI-TOF MS (p = 0.005) and this was attributed to the lack of identification of Shigella species by MALDI-TOF MS. There was no significant difference observed in the identification of yeast however some species of Candida were unidentified by MALDI-TOF MS. Conclusion: Biomarker based MALDI-TOF MS had good performance in a clinical laboratory setting with high sensitivities in the identification of clinically relevant microorganisms

    Investigations on the interplays between Schistosoma mansoni, praziquantel and the gut microbiome

    Get PDF
    Schistosomiasis is a neglected tropical disease burdening millions of people. One drug, praziquantel, is currently used for treatment and control. Clinically relevant drug resistance has not yet been described, but there is considerable heterogeneity in treatment outcomes, ranging from cure to only moderate egg reduction rates. The objectives of this study are to investigate potential worm-induced dysbacteriosis of the gut microbiota and to assess whether a specific microbiome profile could influence praziquantel response.; Using V3 and V4 regions of 16S rRNA genes, we screened the gut microbiota of 34 Schistosoma mansoni infected and uninfected children from CĂŽte d'Ivoire. From each infected child one pre-treatment, one 24-hour and one 21-day follow-up sample after administering 60 mg/kg praziquantel or placebo, were collected.; Overall taxonomic profiling and diversity indicators were found to be close to a "healthy" gut structure in all children. Slight overall compositional changes were observed between S. mansoni-infected and non-infected children. Praziquantel treatment was not linked to a major shift in the gut taxonomic profiles, thus reinforcing the good safety profile of the drug by ruling out off-targets effects on the gut microbes.16S rRNA gene of the Fusobacteriales order was significantly more abundant in cured individuals, both at baseline and 24 hours post-treatment. A real-time qPCR confirmed the over-abundance of Fusobacterium spp. in cured children. Fusobacterium spp. abundance could also be correlated with treatment induced S. mansoni egg-reduction.; Our study suggests that neither a S. mansoni infection nor praziquantel administration triggers a significant effect on the microbial composition and that a higher abundance of Fusobacterium spp., before treatment, is associated with higher efficacy of praziquantel in the treatment of S. mansoni infections.; International Standard Randomised Controlled Trial, number ISRCTN15280205

    Functional characterization and phenotypic monitoring of human hematopoietic stem cell expansion and differentiation of monocytes and macrophages by whole-cell mass spectrometry

    Get PDF
    The different facets of macrophages allow them to play distinct roles in tissue homeostasis, tissue repair and in response to infections. Individuals displaying dysregulated macrophage functions are proposed to be prone to inflammatory disorders or infections. However, this being a cause or a consequence of the pathology remains often unclear. In this context, we isolated and expanded CD34+ HSCs from healthy blood donors and derived them into CD14+ myeloid progenitors which were further enriched and differentiated into macrophages. Aiming for a comprehensive phenotypic profiling, we generated whole-cell mass spectrometry (WCMS) fingerprints of cell samples collected along the different stages of the differentiation process to build a predictive model using a linear discriminant analysis based on principal components. Through the capacity of the model to accurately predict sample's identity of a validation set, we demonstrate that WCMS profiles obtained from bona fide blood monocytes and respectively derived macrophages mirror profiles obtained from equivalent HSC derivatives. Finally, HSC-derived macrophage functionalities were assessed by quantifying cytokine and chemokine responses to a TLR agonist in a 34-plex luminex assay and by measuring their capacity to phagocytise mycobacteria. These functional read-outs could not discriminate blood monocytes-derived from HSC-derived macrophages. To conclude, we propose that this method opens new avenues to distinguish the impact of human genetics on the dysregulated biological properties of macrophages in pathological conditions

    A simple, rapid typing method for Streptococcus agalactiae based on ribosomal subunit proteins by MALDI-TOF MS

    Get PDF
    Streptococcus agalactiae (Group B Streptococcus, GBS), is a frequent human colonizer and a leading cause of neonatal meningitis as well as an emerging pathogen in non-pregnant adults. GBS possesses a broad animal host spectrum, and recent studies proved atypical GBS genotypes can cause human invasive diseases through animal sources as food-borne zoonotic infections. We applied a MALDI-TOF MS typing method, based on molecular weight variations of predefined 28 ribosomal subunit proteins (rsp) to classify GBS strains of varying serotypes into major phylogenetic lineages. A total of 249 GBS isolates of representative and varying capsular serotypes from patients and animal food sources (fish and pig) collected during 2016-2018 in Hong Kong were analysed. Over 84% (143/171) noninvasive carriage GBS strains from patients were readily typed into 5 globally dominant rsp-profiles. Among GBS strains from food animals, over 90% (57/63) of fish and 13% (2/15) of pig GBS matched with existing rsp-profiles, while the remainder were classified into two novel rsp-profiles and we failed to assign a fish strain into any cluster. MALDI-TOF MS allowed for high-throughput screening and simultaneous detection of novel, so far not well described GBS genotypes. The method shown here is rapid, simple, readily transferable and adapted for use in a diagnostic microbiology laboratory with potential for the surveillance of emerging GBS genotypes with zoonotic potential

    Functional analysis and transcriptional output of the Göttingen minipig genome

    Get PDF
    In the past decade the Göttingen minipig has gained increasing recognition as animal model in pharmaceutical and safety research because it recapitulates many aspects of human physiology and metabolism. Genome-based comparison of drug targets together with quantitative tissue expression analysis allows rational prediction of pharmacology and cross-reactivity of human drugs in animal models thereby improving drug attrition which is an important challenge in the process of drug development.; Here we present a new chromosome level based version of the Göttingen minipig genome together with a comparative transcriptional analysis of tissues with pharmaceutical relevance as basis for translational research. We relied on mapping and assembly of WGS (whole-genome-shotgun sequencing) derived reads to the reference genome of the Duroc pig and predict 19,228 human orthologous protein-coding genes. Genome-based prediction of the sequence of human drug targets enables the prediction of drug cross-reactivity based on conservation of binding sites. We further support the finding that the genome of Sus scrofa contains about ten-times less pseudogenized genes compared to other vertebrates. Among the functional human orthologs of these minipig pseudogenes we found HEPN1, a putative tumor suppressor gene. The genomes of Sus scrofa, the Tibetan boar, the African Bushpig, and the Warthog show sequence conservation of all inactivating HEPN1 mutations suggesting disruption before the evolutionary split of these pig species. We identify 133 Sus scrofa specific, conserved long non-coding RNAs (lncRNAs) in the minipig genome and show that these transcripts are highly conserved in the African pigs and the Tibetan boar suggesting functional significance. Using a new minipig specific microarray we show high conservation of gene expression signatures in 13 tissues with biomedical relevance between humans and adult minipigs. We underline this relationship for minipig and human liver where we could demonstrate similar expression levels for most phase I drug-metabolizing enzymes. Higher expression levels and metabolic activities were found for FMO1, AKR/CRs and for phase II drug metabolizing enzymes in minipig as compared to human. The variability of gene expression in equivalent human and minipig tissues is considerably higher in minipig organs, which is important for study design in case a human target belongs to this variable category in the minipig. The first analysis of gene expression in multiple tissues during development from young to adult shows that the majority of transcriptional programs are concluded four weeks after birth. This finding is in line with the advanced state of human postnatal organ development at comparative age categories and further supports the minipig as model for pediatric drug safety studies.; Genome based assessment of sequence conservation combined with gene expression data in several tissues improves the translational value of the minipig for human drug development. The genome and gene expression data presented here are important resources for researchers using the minipig as model for biomedical research or commercial breeding. Potential impact of our data for comparative genomics, translational research, and experimental medicine are discussed

    Epitope mapping and fine specificity of human T and B cell responses for novel candidate blood-stage malaria vaccine P27A

    Get PDF
    P27A is a novel synthetic malaria vaccine candidate derived from the blood stage Plasmodium falciparum protein Trophozoite Exported Protein 1 (TEX1/PFF0165c). In phase 1a/1b clinical trials in malaria unexposed adults in Switzerland and in malaria pre-exposed adults in Tanzania, P27A formulated with Alhydrogel and GLA-SE adjuvants induced antigen-specific antibodies and T-cell activity. The GLA-SE adjuvant induced significantly stronger humoral responses than the Alhydrogel adjuvant. Groups of pre-exposed and unexposed subjects received identical vaccine formulations, which supported the comparison of the cellular and humoral response to P27A in terms of fine specificity and affinity for populations and adjuvants. Globally, fine specificity of the T and B cell responses exhibited preferred recognized sequences and did not highlight major differences between adjuvants or populations. Affinity of anti-P27A antibodies was around 10−8 M in all groups. Pre-exposed volunteers presented anti-P27A with higher affinity than unexposed volunteers. Increasing the dose of GLA-SE from 2.5 to 5 ÎŒg in pre-exposed volunteers improved anti-P27A affinity and decreased the number of recognized epitopes. These results indicate a higher maturation of the humoral response in pre-exposed volunteers, particularly when immunized with P27A formulated with 5 ÎŒg GLA-SE

    Safety and immunogenicity of H1/IC31Âź, an adjuvanted TB subunit vaccine, in HIV-infected adults with CD4+ lymphocyte counts greater than 350 cells/mm3: a phase II, multi-centre, double-blind, randomized, placebo-controlled trial.

    Get PDF
    BACKGROUND: Novel tuberculosis vaccines should be safe, immunogenic, and effective in various population groups, including HIV-infected individuals. In this phase II multi-centre, double-blind, placebo-controlled trial, the safety and immunogenicity of the novel H1/IC31 vaccine, a fusion protein of Ag85B-ESAT-6 (H1) formulated with the adjuvant IC31, was evaluated in HIV-infected adults. METHODS: HIV-infected adults with CD4+ T cell counts >350/mm3 and without evidence of active tuberculosis were enrolled and followed until day 182. H1/IC31 vaccine or placebo was randomly allocated in a 5:1 ratio. The vaccine was administered intramuscularly at day 0 and 56. Safety assessment was based on medical history, clinical examinations, and blood and urine testing. Immunogenicity was determined by a short-term whole blood intracellular cytokine staining assay. RESULTS: 47 of the 48 randomised participants completed both vaccinations. In total, 459 mild or moderate and 2 severe adverse events were reported. There were three serious adverse events in two vaccinees classified as not related to the investigational product. Local injection site reactions were more common in H1/IC31 versus placebo recipients (65.0% vs. 12.5%, p = 0.015). Solicited systemic and unsolicited adverse events were similar by study arm. The baseline CD4+ T cell count and HIV viral load were similar by study arm and remained constant over time. The H1/IC31 vaccine induced a persistent Th1-immune response with predominately TNF-α and IL-2 co-expressing CD4+ T cells, as well as polyfunctional IFN-γ, TNF-α and IL-2 expressing CD4+ T cells. CONCLUSION: H1/IC31 was well tolerated and safe in HIV-infected adults with a CD4+ Lymphocyte count greater than 350 cells/mm3. The vaccine did not have an effect on CD4+ T cell count or HIV-1 viral load. H1/IC31 induced a specific and durable Th1 immune response. TRIAL REGISTRATION: Pan African Clinical Trials Registry (PACTR) PACTR201105000289276
    • 

    corecore